福萊特玻璃集團股份有限公司 Flat Glass Group Co., Ltd.

Articles of Association of Flat Glass Group Co., Ltd.

Chapter 1 General Provisions

 Article 1
 T
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $T = C, m = 1, \dots, p = 1,$

Т.С. M 29 D 2005. L.: (浙江福萊特玻璃鏡業有限公司). Т.С. M 29 D 2005. L.: (浙江福萊特玻璃鏡業有限公司). Т.С. M 2005. M 2007. M 20.

Article 2 R_{1} C_{nr} C_{nr}

C, : 福萊特玻璃集團股份有限公司

Article 3 Attack C_{n} N_{n} : N. 1999, I_{n} R_{n} I_{n} J_{n} J_{n} I_{n} I_{n} I

 P_{1}, C_{1} : 314001;

F (86573) 82793015.

Article 4 T_{m} , T_{m} , C_{m} , C_{m} , M_{m}

Article 5 T C $_{MY}$ (L, C_{MY}).

 $U_{\mu} = \dots = \dots = A_{\mu} =$

Article 7 T. A_{α_1} , A_{α_2} , A_{α_3} , A_{α_4}

 $\begin{array}{c} P_{1} = 1 \quad \dots \quad A_{a_{n+1}} \quad A_{a_{n+1}} \quad A_{a_{n+1}} \quad \dots \quad P_{a_{n+1}} \quad \dots$

ر ایران ایر میرون میارد. در و میامی و ایران میرون ماریم با معید میران در برد. تا ۲ میرو میروم میروی میران در ایرامی میان میرون ایران میرون در ایران میرون ایران در می

 $U_{1},\ldots, v_{N},\ldots, v$

Article 9 $P_{1 \neq 1}$ $P_{2 \neq 1}$ $P_{2 \neq 2}$ $P_{2 \neq 3}$ $P_{2 \neq$

Chapter 2 Objective and Scope of Business

 $\mathbf{T} = \{1, \dots, n\}, \{1$

Chapter 3 Shares and Registered Capital

Article 13 A C M MB0.25.

Article 14 T \ldots C_{mr} \ldots m_{mr} \ldots m_{mr} \ldots T_{mr} C_{mr} \ldots T_{mr} T_{mr} \ldots T_{mr} T_{mr}

 $\begin{array}{c} F_{\mathcal{A}} \downarrow_{\mathcal{A}} \downarrow_{\mathcal{$

 $F_{\mathcal{A}} = \left\{ \begin{array}{cccc} F_{\mathcal{A}} = F_{\mathcal{A}} = \left\{ \left\{ \begin{array}{cccc} F_{\mathcal{A}} = F_{\mathcal{A$

 $T = t_{m} + h_{m} +$

 $\mathbf{B}_{\mathbf{x}} = \left\{ \mathbf{B}_{\mathbf{x}} = \left\{ \mathbf{M}_{\mathbf{x}} \right\} \\ = \left\{ \mathbf{M}_{\mathbf{M}_{\mathbf{x}} \right\} \\ = \left\{ \mathbf{$

Article 16 A, \mathcal{A} and \mathcal{A}

 $T = \frac{1}{M} = \frac{C_{m}}{M} = \frac{C_{m}}{M} = \frac{C_{m}}{M} = \frac{1}{M} = \frac{1}{M}$

No.	Name of shareholder	Amount of capital contributed (RMB'000)	Percentage of contribution (%)	Contribution method	Date of contribution
1	Ri H. H. I	24,500	35.0	С.	D
2	J, I J, I	17,500	25.0	C .	D 2005
3	Ri, Zeix	17,500	25.0	C .	D 2005
4	7., i W., z., i	3,150	4.5	C	D 2005
5	S., Fizi,	2,100	3.0	C .	D 2005
6		2,100	3.0	C	D 2005
7	W	1,050	1.5	C	D 2005
8	S Q I	700	1.0	C	D 2005
9	Τ, Η, ι ι	700	1.0	С.	D 2005
10	W SI.	700	1.0	С.	D 2005
Total		70,000	100	-	

 Article 17
 T
 C
 π 2,146,893,254 π π π

 1,696,893,254 π π $(A - \pi)$ 2,146,893,254 π π

Article 18 T \dots $m \rightarrow \dots$ $m \rightarrow \dots$

A \ldots α_{1} \ldots α_{n} \ldots

Article 20 I C_{m} C_{m} A_{m} A_{m}

Article 21 T. C. M (A = 1) (A

Article 22 T. C. $\mathbf{m} \sim \mathbf{m} \sim \mathbf{m}$

 $T = C_{m} + m_{m} + \dots + m_{m}$

- $(V) \quad C_{\ldots} \quad \mathcal{A}_{1} \quad \ldots \quad \mathcal{A}_{n} \quad \mathcal{$
- (VI) $\mathbf{C}_{\mathbf{v}} = \mathbf{C}_{\mathbf{v}} + \mathbf{C}_{\mathbf{v$
- (VII) $O_{n} = m_{n} + m_{n}$

 $\begin{array}{c} \mathbf{L}_{\mathbf{n}} \\ \mathbf{A}_{\mathbf{n}} \\ \mathbf{A}_{\mathbf{n}} \\ \mathbf{n}_{\mathbf{n}} \\ \mathbf{n}_{\mathbf{n$

Article 23 S \dots H_{n} K_{n} K_{n} K_{n} M_{n} \dots $M_{$

Article 24 W \sim (1 + 1 + 2 + 3), (1 + 1 + 2 + 3), (1 + 1 + 2 + 3), (1 + 1 + 2 + 3), (1 + 1 + 2 + 3), (1 + 1 + 2 + 3), (1 + 2 +

 $F_{m} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$

 $W = \frac{1}{1} + \frac{1}{1} +$

Chapter 4 Capital Reduction and Repurchase of Shares

Article 25 T. C. $\mathbf{m}' = \mathbf{m}' = \mathbf{m$

 $\mathbf{T} = \mathbf{C}_{\mathbf{m}} + \mathbf{C}_{\mathbf$

 $T = C_{mr} = \frac{1}{mr} + \frac{1}{mr$

- (II) W \dots M + 1 $\dots + M$ $\dots + M$
- (III) $W \ldots I_{\lambda_j \lambda_{-\lambda}} I \ldots I_{\lambda_j} E_{\mu \nu_j} \ldots S = O \ldots I_{\lambda_j} P_j \ldots I_{\lambda_j} I_{\lambda_$
- $(IV) W \dots w \dots (IV) W$

T : C : m : (m) : (m)

- $(I) = I_{1} I_{1} \cdots \cdots P_{n} I_{n} \cdots P_{n} \cdots$
- (II) Brancher \mathcal{A} (II) \mathcal{A} (II) (II) \mathcal{A} (II
- (III) Brown is a set of \mathcal{A} and \mathcal{A} a
- (IV) $O_{m} \cdots O_{m} \cdots$

 $\begin{array}{c} W & \swarrow & C & \underset{m}{} & \swarrow & \swarrow & \underset{m}{} & \underset{$

 $T = \sum_{m \in \mathcal{M}} \left\{ \sum_{i=1}^{n} \frac{1}{m_{i}} + \sum_{i=1}^{n} \frac{1}{m_{i}$

- A. $\mathcal{C}_{\mathbf{m}}$ $\mathcal{C}_{\mathbf{m}}$
- $(I) T = \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots \prod_{j=1$
- (II) W = (1 + 1) + (1 +

Article 30 R, $I \neq I$, C_{mr} , Z_{mr} , I_{mr} , I

 $\mathbf{T} = \left[\left[\mathbf{T} - \mathbf{T} \right] \left[\left[\mathbf{T} - \mathbf{T} \right] \right] \left[\left[\mathbf{T} - \mathbf{T} \right] \left[\mathbf{T} - \mathbf{T} \right] \right] \left[\mathbf{T} - \mathbf{T} \right] \left[\mathbf{T$

Article 31 U. C_{n} C_{n} C_{n} C_{n} C_{n} C_{n} C_{n} C_{n} C_{n}

- $(I) \quad I \quad \ldots \quad C \quad \underset{m}{} \quad \ldots \quad \underset{m}{} \quad \underset{m}{} \quad \ldots \quad \underset{m}{} \quad \underset{m}{} \quad \ldots \quad \underset{m}{} \quad \ldots \quad \underset{m}{} \quad \ldots \quad \underset{m}{} \quad \underset{m}{ \quad \underset{m}{} \quad \underset{m}{} \quad \underset{m}{ \quad \underset{m}{} \quad \underset{m}{} \quad \underset{m}{ \quad \underset{m}{}$
- (II) I C_{m} C_{m} \dots m + 1 (1 1) \dots m + 1 (1 2) \dots (1 1) \dots (1 2) \dots (1 2)

 - 2. Define the maximum product frequency of C_{mr} of C_{mr} of m_{mr} o
- - 1. A_{i_1} , A_{i_2} , A_{i_3} , A_{i_4} , A_{i_5} , A_{i_5

 - 3. \mathbf{C} ..., \mathbf{n} , \mathbf{n}
- $(IV) A \dots (IV) A \dots ($

Chapter 5 Financial Assistance to Acquire Shares of the Company

Article 32 T C_{mr} C_{mr}

 $\mathbf{T} = \mathbf{C}_{\mathbf{m}} \xrightarrow{\mathbf{n}}_{\mathbf{n}} \xrightarrow{\mathbf{n}} \xrightarrow{\mathbf{n}}_{\mathbf{n}} \xrightarrow{\mathbf{n}} \xrightarrow{\mathbf{n}}_{\mathbf{n}} \xrightarrow{\mathbf{n}}_{\mathbf{n}} \xrightarrow{\mathbf{n}} \xrightarrow$

Article 33 F_{1} \cdots F_{n} \cdots F_{n}

- (I) G, .;
- (II) G_{1} , G_{2} , G_{1} , G_{2} , G_{2}

 $\mathbf{O}_{\mathbf{x}_1} = \mathbf{O}_{\mathbf{x}_2} = \mathbf{O}_{\mathbf{x}_1} = \mathbf{O}_{\mathbf{x}_2} = \mathbf{O}_{\mathbf{x}_1} = \mathbf{O}_{\mathbf{x}_2} = \mathbf{O}_{\mathbf{x}_2$

- (I) $\mathbf{T} \cdot \mathbf{C}_{\mathbf{m}}$, $\mathbf{c}_{\mathbf{n}}$, $\mathbf{c}_{\mathbf{$
- (II) $T = C_{ijj}$, $i \neq j$,
- (III) $T = C_{\alpha} \prod_{i=1}^{n} \cdots \prod_{i=1}^{n}$
- $(IV) T = C_{m'} = (IV) + (IV$

 $(VI) T = C_{mr} + e_{r} + e_$

Chapter 6 Shares and Shareholders' Register

Article 35 A S $(a_{1}, b_{2}, b_{3}, b_{3}$

 $M \dots \mathcal{L}_{n} \mathcal{L}_{$

- $(I) \quad C_{A} \quad \mathbf{M} \quad \mathbf{M} \quad \mathbf{M} ;$
- (III) $\mathbf{S} = \mathbf{A} + \mathbf$
- $(V) \quad S_{m_1} = 1_{m_1} \quad \text{and} \quad s_{m_2} = 1_{m_1} \quad s_{m_2} = 1_{m_2} \quad s_{m_1} = 1_{m_2} \quad s_{m_2} =$
- (VI) O. $\mathcal{A}_{\mathbf{m}}$ and $\mathcal{A}_{\mathbf{m}}$ is the set of $\mathbf{C}_{\mathbf{m}}$ of $\mathbf{L}_{\mathbf{m}}$, $\mathbf{S}_{\mathbf{m}}$, $\mathbf{P}_{\mathbf{m}}$, $\mathbf{P}_{\mathbf{m}}$, $\mathbf{N}_{\mathbf{m}}$, $\mathbf{19A.52}$, $\mathbf{L}_{\mathbf{m}}$, $\mathbf{R}_{\mathbf{m}}$, $\mathbf{S}_{\mathbf{m}}$, $\mathbf{E}_{\mathbf{m}}$, $\mathbf{I}_{\mathbf{m}}$, $\mathbf{I}_{\mathbf{m}$

 $\begin{array}{c} D_{1} \downarrow_{1} \downarrow_{2} \downarrow_{2}$

(I) \mathbf{T} ..., \mathbf{x} , \mathbf{x} , \mathbf{x} , \mathbf{C} , \mathbf{m} , \mathbf{r}

- (II) \mathbf{T} $\mathbf{$
- (III) \mathbf{T} , \mathbf{e} , \mathbf{e}

Article 36 T. C. m with m the matrix m to m to

 $\mathbf{T} = \mathbf{v}_{1} + \mathbf{v}_{2} + \mathbf{v}_{3} + \mathbf{v}_{4} + \mathbf{v}_{5} + \mathbf{$

Article 37 T C_{m} C_{m} C_{m}

Article 38 S \mathcal{A}_{A} \mathcal{A}_{A

Article 39 T. C. $m \sim 11 m \sim 12$ $m \sim 12$ $m \sim 13$ $m \sim 14$ $m \sim 14$ $m \sim 14$

- (II) C_{1} ..., t_{n} t_{n} ..., t_{n} t_{n}

 $\mathbf{T} = \mathbf{T} + \mathbf{T} +$

 $\mathbf{I}_{\mathbf{a}} = [\mathbf{a}_{\mathbf{a}} + \mathbf{a}_{\mathbf{a}} +$

 $\mathbf{T}_{\mathbf{x}} = \{\mathbf{y}_{\mathbf{x}}, \dots, \mathbf{y}_{\mathbf{x}}, \dots, \mathbf{y}_{\mathbf{x}}\}, \dots, \{\mathbf{y}_{\mathbf{x}}, \dots, \mathbf{y}_{\mathbf{x}}, \dots, \mathbf{y}_{\mathbf{x}}\}, \dots, \{\mathbf{y}_{\mathbf{x}}, \dots, \mathbf{y}_{\mathbf{x}}, \dots, \mathbf{y}_{\mathbf{x}}\}$

- (I) $S \sim (II) \sim (III) \sim (III)$
- $(\text{III}) \quad \mathbf{S} \quad \mathbf{s$

 $\mathbf{A}_{\mathbf{j}} \sim \mathbf{A}_{\mathbf{j}} \sim$

(I) \mathbf{T} , we consider \mathbf{m} , if $\mathbf{m$

- (III) S. m (1..., 1 (1..., n (1...,
- (V) \mathbf{I} ..., \mathbf{e} ...,

Article 44 N. C_{m} , C_{m} , S_{m} , C_{m}

 $\mathbf{T} = t_{\mathbf{x}} \mathbf{e}_{\mathbf{x}} \mathbf{e}_{\mathbf{x}}$

Article 45 N. $(1 + 1)^{1} = (1 + 1)^{1} =$

Article 47 I \dots m^{-1} \dots

معرب المعن المعربة بالمعربة المعربة المعربة المعربة المعرب المعربة المعربة المعربة المعربة المعربة المعربة الم مناح معظم المعالية المعالية المعالية المعربة المعربة المعربة المعربة المعربة المعالية المعالية المعربة المعربة ا المعادية المعربة المعرفية المعرفية المعرفية المعربة المعربة المعربة المعربة المعربة المعربة المعربة المعربة الم معرف المعربة المعرفية المعرفية المعرفية المعرفية المعربة المعربة المعربة المعربة المعربة المعربة المعربة المعربة

 $\mathbf{A}_{\mathbf{r}_{1}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{1}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}} = \mathbf{A}_{\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}$

- (IV) B. $(1 1)^{1} + 1^{1}$

 $I = \sum_{i=1}^{n} \sum_{i=1}^{n}$

- (V) I, \mathcal{A} , \mathcal{A}
- $(\text{VII}) \mathbf{A}_{11}, \dots, \mathbf{A}_{n_{1}}, \dots$

Article 50 T. C. m' (m') (m')

Chapter 7 Rights and Obligations of Shareholders

Article 51 S $\sim 1^{1/2}$ $\sim C_{m}$ $\sim 2^{1/2}$ $\sim 1^{1/2}$ $\sim 1^{1/2}$ $\sim 2^{1/2}$ $\sim 2^{1/2}$ $\sim 2^{1/2}$

 $\mathbf{T} = \mathbf{C}_{\mathbf{m}} + \cdots + \mathbf{m}_{\mathbf{n}} + \cdots + \mathbf{m$

 $\mathbf{W} = \{\mathbf{w}_{1}, \dots, \mathbf{w}_{n}\}, \{\mathbf{w}_{n}, \dots$

- $(\text{III}) \quad \mathbf{I} \quad \dots \quad \mathbf{I} \quad \dots \quad \mathbf{I} \quad \dots \quad \mathbf{I} \quad \dots \quad \mathbf{I} \quad \mathbf{I} \quad \mathbf{I} \quad \dots \quad \mathbf{I} \quad \mathbf{$

- $(I) \quad T_{i} \neq \dots \quad i_{i_{1},i_{1},\ldots,i_{n}} \neq \dots \quad i_{i_{n}} \neq$
- $(\text{III}) \quad \text{T}_{\text{constraint}}, \quad \text{constraint}, \quad \text{c$
- $(\mathrm{IV}) \ \mathbf{T}_{\mathbf{A}} \ \mathbf{T}$
- (V) \mathbf{T} $\mathbf{T$
 - 1. $O_{\dots, N_{n}}$ $A_{\alpha_{n}}$ $A_{\alpha_{n}}$
 - 2. B_{1} , I_{2} ,
 - (1) $\mathbf{C}_{\mathbf{r},\mathbf{r}}$, $\mathbf{C}_{\mathbf{r},\mathbf{r}}$,
 - (2) $\mathbf{P}_{\mathbf{m}}$, $\mathbf{P}_{\mathbf{m}}$,
 - () $P_{\mathcal{A}}$, $f_{\mathcal{A}}$, $m_{\mathcal{A}}$, $m_{\mathcal{A}}$, $f_{\mathcal{A}}$, f
 - $(.) \quad \mathbf{P}_{\mathbf{A}} = (\mathbf{A}, \mathbf{A}, \mathbf$
 - (,) N , ;

- $(t) \quad \mathbf{F}_{\mathbf{n}} = \mathbf{M} \quad \mathbf$
- $(\mathbf{x}) = \mathbf{I}_{t} \cdot \mathbf{x}_{t} \cdot$
- $(3) \quad \mathbf{R} , \quad \mathbf{A} \quad$
- (4) \mathbf{R} , \mathbf{R} ,
- (5) $C_{\alpha} + \cdots + c_{\alpha} + \cdots + c_{\alpha}$
- (6) $\mathbf{T}_{\mathbf{n}}$ (6) $\mathbf{T}_{\mathbf{n}}$ (6) $\mathbf{T}_{\mathbf{n}}$ (7) $\mathbf{T}_{$
- (8) $\mathbf{M}_{\mathbf{x}}$, $\mathbf{M}_{\mathbf{x}}$,

- (VI) I $C_{m} \sim c_{m} \sim c_{m}$
- $(\text{VII}) \ \mathbf{F}_{\mathbf{x}} \ \mathbf{e}_{\mathbf{x}} \ \mathbf{e$
- $(\text{VIII}) \mathbf{T} \dots \mathbf{z}_{n} \dots \mathbf{T}_{n} \dots \mathbf{z}_{n} \dots \mathbf{z$
- $(IX) T_{A} = \{ A_{A} = \{$

Article 53 I A_{x_1} , A_{x_2} , 52, A_{x_1} , A_{x_2} , A_{x_3} , A_{x_4} ,

Article 54 I $(m^2 + m^2) = (m^2 + m^2) + ($

 $\mathbf{I}_{\mathbf{m}} = \mathbf{I}_{\mathbf{m}} =$

Article 55 I $(1, \dots, n)$ $(1, \dots, n)$ (1,

Article 57 T \ldots \ldots \ldots C_{m} \ldots \ldots \ldots \ldots

- $(IV) S \qquad (IV) S \qquad ($
- $(V) T_{i} + A_{i} +$

 $\mathbf{A}_{\mathbf{x}} = \mathbf{A}_{\mathbf{x}} =$

Article 58 I C_{m} C_{m} C_{m} C_{m} C_{m} C_{m}

Article 59 T \dots m^{-1} m^{-1} $C_{m^{-1}}$ $C_{m^{-1}}$ M^{-1} $M^{$

- $(\mathrm{II}) \quad A_{\mathrm{II}} = \frac{1}{2} \left[\frac{1}{2} \left$

- (III) W \ldots 1 \ldots 30% $(\ldots, 1, \ldots, 1, \ldots$
- $(\mathrm{IV}) \ \mathbb{W} \qquad (\mathrm{IV}) \ \mathbb{W} \qquad (\mathrm{I$

 $\mathbf{T} = \mathbf{T} =$

Chapter 8 General Meetings

Article 62 T (m + 1) (m + 1) (m + 1) (m + 1) (m + 1)

- $\begin{array}{c} (I) \quad T_{1} \quad (I) \quad x_{1} \quad (I) \quad$
- (II) T_{i} , \dots , m_{n} , m_{n} , \dots , m_{n} ,
- $(\text{III}) \quad \mathbf{T}_{\mathbf{n}} = \left\{ \mathbf{n}_{\mathbf{n}} \right\}_{\mathbf{n}} = \left\{ \mathbf{n}_{\mathbf{n}} \right\}_{\mathbf{$
- $(V) \quad T_{i} \quad (\qquad M) \quad$

- (VI) $\mathbf{T}_{\mathbf{r}} \neq \mathbf{T}_{\mathbf{r}} \neq \mathbf{T}_{\mathbf{r}} = \mathbf{T}_{\mathbf{r}} + \mathbf{T}_{\mathbf{r}} = \mathbf{T}_{\mathbf{r}} + \mathbf{T}_{\mathbf{r$
- $(\text{VII}) \mathbf{T}_{\mathbf{x}} \mathbf{T}_{\mathbf$
- $(\text{VIII}) \ \mathbf{T}_{\mathbf{v}} \leftarrow \mathbf{$
- (IX) T. \mathcal{A} , \mathcal{A}
- (XI) T_{m} , C_{m} , C_{m}
- (XII) $T_{i} = A_{i} + A_{i}$
- (XIV) $T_1 \dots T_n \dots T_n$, $A_{n+1} = 64;$
- $(XV) T \qquad (XV) T \qquad ($
- $(XVI) T, I = \prod_{m} (XVI) T, I$
- $(XVII) \mathbf{T}_{\mathbf{M}} (\mathbf{X} \mathbf{V} \mathbf{I}) \mathbf{T}_{\mathbf{M}} (\mathbf{X} \mathbf{I}) \mathbf{T$
- $(XVIII) \mathbf{T}_{\mathbf{x}} (\mathbf{x}, \mathbf{x}) \mathbf{m} (\mathbf{x}, \mathbf$
- $(XIX) \mathbf{T}_{\mathbf{m}} (\mathbf{x}_{\mathbf{m}}) \mathbf{m}_{\mathbf{m}} (\mathbf{x}_{\mathbf{m}}) \mathbf{m}_{\mathbf{m}$
- $(XX) T_{1} = I_{1} =$

 $W_{x} = \left\{ \begin{array}{cccc} W_{x} = \left\{ \begin{array}{cccc} & & & \\ & & \\ \end{array} \right\} = \left\{ \begin{array}{cccc} & & & \\ \end{array} = \left\{ \begin{array}{cccc} & & & \\ \end{array} \right\} = \left\{ \begin{array}{cccc} & & \\ \end{array} = \left\{ \begin{array}{cccc} & & \\ \end{array} \right\} = \left\{ \begin{array}{cccc} & & \\ \end{array} = \left\{ \begin{array}{cccc} & & \\ \end{array} \right\} = \left\{ \begin{array}{cccc} & & \\ \end{array} = \left\{ \begin{array}{cccc} & & \\ \end{array} \right\} = \left\{ \begin{array}{cccc} & & \\ \end{array} = \left\{ \end{array} \right\} = \left\{ \begin{array}{cccc} & & \\ \end{array} = \left\{ \begin{array}{cccc} & & \\ \end{array} = \left\{ \end{array} \right\} = \left\{ \begin{array}{cccc} & & \\ \end{array} = \left\{ \begin{array}{cccc} & & \\ \end{array} = \left\{ \end{array} = \left\{ \begin{array}{cccc} & & \\ \end{array} = \left\{ \end{array} \right\} = \left\{ \begin{array}{cccc} & & \\ \end{array} = \left\{ \end{array} \right\} = \left\{ \end{array} = \left\{ \begin{array}{ccccc} & & \\ \end{array} = \left\{ \end{array} = \left\{ \end{array} \right\} =$

Article 64 T (m + 1) (m + 1) (m + 1)

- (II) A $(11 \times 10^{-1} \times 1$
- (III) A. II and λ^{1} is the set of the s
- (V) A (1 1)
- (VI) A. II and the state of the
- $(VII) O, \quad \mathcal{A}_{1} = \mathcal{A}_{2} = \mathcal{A}_{1} = \mathcal{A}_{2} = \mathcal{A}_{2}$

Article 66 $G_{1,m}$, $m_{1,m}$,

 $\mathbf{I}_{\mathbf{x}} = \mathbf{A}_{\mathbf{x}} =$

- (I) $W = \frac{1}{m} \frac{1}$

- (IV) W M . $L_{\lambda}e^{-\lambda}$... m λ ... $e^{-\lambda}$... M ... $L_{\lambda}e^{-\lambda}$... $e^{-\lambda}$... M ... $L_{\lambda}e^{-\lambda}$... $e^{-\lambda}$... M ... $L_{\lambda}e^{-\lambda}$... L_{λ
- (V) \mathbf{L} $(\mathbf{n}, \mathbf{n}, \mathbf{n}$

 $T = \left[\left[\begin{array}{c} \mathbf{T} \\ \mathbf{T} \\$

 $D_{r_{A}} = \sum_{m \in \mathcal{M}} \sum_{m$

- (1) $W = \{m_1, \dots, m_n\}$ $(1) M = \{m_1, \dots, m_n\}$ $(1) M = \{m_1, \dots, m_n\}$ $(1) M = \{m_1, \dots, m_n\}$
- (2) $W_{\mu\nu}$, $w_{\mu\nu}$,
- $(4) \quad \mathbf{O}_{\mathbf{v}} = \mathbf{O}_{\mathbf{$

Article 67 A (m + 1) (

Article 68 N. (m - 1) = (m - 1) =

- (III) S. $m \sim \mathcal{A}$, \mathcal{A} ,
- (IV) $\mathbf{P}_{e_{1}}$, \mathbf{P}_{e
- $(V) \quad C_{\dots, 1} \dots f_{1} \dots f_{n} \dots f_{$
- (VI) $C_{\dots, \dots, \dots, n}$, $C_{\dots, n}$, $C_{\dots,$
- (VII) C_{m} , c_{m
- (VIII) $S_{\mu_{1},\mu_{2},\mu_{3},$

- (XI) $S_{\mu_{1}\mu_{2}\mu_{3}}$ $(X_{\mu_{1}})$ $(X_{\mu_{1}})$ (

Article 69 T \dots (m + m + 1) (m + m + 1) (m + m + 1) (m +

 $\mathbf{P}_{\mathbf{1}_{1}},\ldots,\mathbf{1}_{\mathbf{m}_{1}},\mathbf{m}_{1},\ldots,\mathbf{m}_{n},\ldots,\mathbf{n},\ldots,\mathbf{n}_{n},\ldots,\mathbf{n}_{n},\ldots,\mathbf$

Article 70 W \ldots C $_{\mathbf{m}}$ \ldots $_{\mathbf{k}}$ \ldots $_{\mathbf{k}$ \ldots $_{\mathbf{k}}$ \ldots $_{\mathbf{k}}$ \ldots $_{\mathbf{k}}$ \ldots $_{\mathbf{k}}$

Article 72 A. $(m_1, m_2) = (m_1, m_2) = (m$

- $(\text{III}) \quad \mathbf{T}_{\mathbf{x}} = \left\{ \begin{array}{cccc} \mathbf{x}_{\mathbf{x}} & \mathbf{x}_{\mathbf{y}} & \mathbf{x}_{$

Article 75 A. $m \sim 1$ of $m \sim 1$

Article 76 A $(1, \dots, n)$ $(1, \dots, n)$ (1,

Article 77 A. (1, 1), (1, 1), (1, 2),

 $\mathbf{I} = \frac{\mathbf{I}_{\mathbf{A}} \cdot \mathbf{I}_{\mathbf{A}} \cdot \mathbf{I}_$

Article 80 W C_{m} C_{m}

 $\mathbf{U}_{\mathbf{n}} = \mathbf{U}_{\mathbf{n}} =$

 $T = \frac{1}{m} \sum_{k=1}^{n} \left(\frac{1}{m} \right), \quad \frac{1}{m} = \frac{1}{m} \sum_{k=1}^{n}$

Article 81 $P_{\mathcal{A}}$ \dots m^{n} \dots m^{n} \dots m^{n} \dots m^{n} \dots m^{n} \dots m^{n}

- (II) I. (11)

Article 82 G_{1} m_{1} m_{1} m_{2} m_{1} m_{2} m_{2} m

 $\mathbf{W} = \mathbf{m} \cdot \mathbf{m} \cdot$

 $\mathbf{T} = \mathbf{C}_{\mathbf{m}} = \cdots = \cdots = \mathbf{A}_{\mathbf{n}} + \mathbf{A}_{\mathbf{n}} +$

 $\begin{array}{c} \mathbf{P}_{1} \neq_{1} \\ = \mathbf{P}_{1} \neq_{1} \\ = \mathbf{P}_{1} \neq_{1} \\ = \mathbf{P}_{1} \neq_{1} \\ = \mathbf{P}_{1} \\ =$

 $\mathbf{B}_{\mathbf{n}} = \mathbf{B}_{\mathbf{n}} = \mathbf{M}_{\mathbf{n}} + \mathbf{M}_{\mathbf{n}} +$

 $\mathbf{W} = \left\{ \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}, \mathbf{w}$

- (I) C \mathcal{M}
- (II) $A_1, \ldots, a_{n+1}, \ldots, a_{$
- (III) $O_{\dots,\infty} = M_{m} = M_{m$

U. برجه المسلم من برجود المراجع من المراجع من المرجع المعهم من من على المعهم من المعالي من برجيد المعالي من بر المرجع المعالي من المعالي من المعالي من المعالي من معروف المعهم من من المعهم من معرف المعهم من المعالي من المع المرجع المعالي من المعالي من المعالي من المحمد من المعالي من المعالي من المعالي من المعالي من المعالي من المعالي معرفه من المعالي من الم

 $\mathbf{T}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}, \dots, \mathbf{x}_{$

Article 87 I \dots m^{-1} $m^$

Article 88 \mathbb{R}_{1} and \mathbb{R}_{1} $\mathbb{R}_$

- (I) \mathbf{T} $\mathbf{T$
- (II) The set of the s
- (IV) $\mathbf{T} = \mathbf{T} = \mathbf{$

 $W = \left\{ \begin{array}{c} W = \left\{ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

 $O_{A} = \sum_{i=1}^{n} \frac{1}{m} \left[\frac{1}{m} \left[$

 $\mathbf{T} = \mathbf{T} + \mathbf{T} +$

Article 92 T $m^{-1} m^{-1} m$

- (II) $P_{\mathcal{A}}$, t_{λ} , $t_$
- (III) A_{μ} , A_{μ
- (IV) $A_{m} = \frac{1}{m} + \frac$
- (V) \mathbf{M} and \mathbf{M}

- (I) $I_{\dots,n}$, $I_{\dots,$
- (II) $\mathbf{I}_{\mathbf{x},\mathbf{y}}$, $\mathbf{I}_{\mathbf{x},\mathbf{y}}$,
- (IV) R A_{A} , $A_{$
- (V) E_{m} , \ldots , E_{m} , E_{m} , \ldots , E_{m} , E_{m} , \ldots , E_{m} ,
- (VI) W C_{m} C_{m} m' = 1 m' = 1
- (VII) O, $a_{\mathbf{m}} = a_{\mathbf{m}} + a_{\mathbf{m}} +$

 $\mathbf{F}_{\mathbf{M}} = \left\{ \mathbf{F}_{\mathbf{M}} = \left\{ \mathbf{F}$

Article 95 T \dots m^{n} \dots m^{n}

Article 96 I \dots m_{m} \dots $(1 \dots m_{m})$ m_{m} \dots $(1 \dots m_{m})$ $(1 \dots m_{m})$ (

 $\mathbf{T} = \frac{1}{\mathbf{m}} \mathbf{T} = \frac{1$

- (II) $\mathbf{m} \cdots \mathbf{m}^{\mathbf{n}} \cdots \mathbf{n}^{\mathbf{n}} \cdots \mathbf{n}^{\mathbf{n}} \mathbf{m}^{\mathbf{n}} \cdots \mathbf{n}^{\mathbf{n}} \mathbf{m}^{\mathbf{n}} \mathbf{m}^{\mathbf{n}} \cdots \mathbf{n}^{\mathbf{n}} \mathbf{m}^{\mathbf{n}} \mathbf{m}^{\mathbf{n}} \cdots \mathbf{n}^{\mathbf{n}} \mathbf{m}^{\mathbf{n}} \mathbf{m}^{$
- (III) $\mathbf{m} \cdot \mathbf{m} \cdot \mathbf$
- $(\mathrm{IV}) \quad (\mathrm{IV}) \quad (\mathrm{I$

Article 99 T \dots $T + t_{M} + \cdots + t_{M} +$

Article 101 S $\sim 1^{1/2}$ m $\sim 1^{1/2}$ $\sim 1^{1/2}$ m $\sim 1^{1/2}$ $\sim 1^{1/2}$

 $\begin{array}{c} \mathbf{A}_{11}, \mathbf{A}_{21}, \mathbf{A}_{22}, \mathbf{A}_{21}, \mathbf{A}_{22}, \mathbf{A}$

Article 103 R (1×10^{-1}) (1×10^{-1})

Article 105 W , ω_{n} , ω_{n}

Article 106 W , ω ,

Chapter 9 Special Procedures for Voting by Class Shareholders

 $\mathbf{I} = \{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}, \mathbf{i}_{4}, \mathbf{i}_{3}, \mathbf{i}_{4}, \mathbf{i}_{$

Article 108 R_1 e^{-t} ... e^{-t}

- $(\text{VII}) \mathbf{T}_{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_$
- $(IX) T_{1} + I_{2} + I_{3} +$

- (XII) T_{i} , σ_{i} , σ_{i}

Article 110 T (1), (1), (1), (2),

 $\mathbf{T} = \prod_{\mathbf{m}} (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x$

- (I) $A_{\alpha_{n+1}} = A_{\alpha_{n+1}} = 281$. (i.e. $A_{\alpha_{n+1}} = A_{\alpha_{n+1}} = 61$
- (II) $A_{\alpha_{N-1}} = 28$, $a_{\alpha_{N-1}} = A_{\alpha_{N-1}} = A_{$

Article 111 \mathbb{R} (1)

Article 112 W. \mathcal{C} , \mathcal{M} , \mathcal{C} , \mathcal{M}

 $\mathbf{T} = \mathbf{T} =$

 $S_{p_{1}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

- (I) W_{λ} , w_{μ} , w_{μ}
- (II) W $\sim C_{m}$ $\sim c_{m}$
- $(\text{III}) \quad \mathbf{S} \quad \mathbf{s} \quad \mathbf{C}_{\mathbf{M}} \quad \mathbf{c} \quad \mathbf{c$

Chapter 10 Board of Directors

Article 115 T. C. $_{m}$... $_{$

 $\mathbf{T} = \frac{\mathbf{T}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n} \mathbf{n}^{-1} \mathbf$

T. B. \mathcal{A} . C. \mathcal{A} . \mathcal

 $\mathbf{T} = \mathbf{T} =$

 $P_{A_{1}} \sim m^{-1} a_{A_{2}} \sim$

 $\begin{array}{c} A_{1}, \ldots, \ldots, m \in \{1, \dots, n_{k}, \ldots, \dots, n_{k}, \ldots, m \in \{1, \dots, n_{k}, \ldots, n$

 $\mathbf{E}_{\mathbf{x}} = \mathbf{E}_{\mathbf{x}} =$

 $\mathbf{T} = \mathbf{T} =$

 $\begin{array}{c} \textbf{Article 117} \quad \textbf{T} \quad \textbf{f}_{\textbf{Article 117}} \quad \textbf{f}_{\textbf{Arti$

- (IV) T, \mathcal{A} , \mathcal{C} , \mathcal{C} , \mathcal{A} , \mathcal{C} , \mathcal{A} , \mathcal{A}
- $(VI) T_{1} \cdots \sigma_{m} + \cdots \sigma_{n} \cdots \sigma_{n}$
- $(\text{VII}) \text{ T}_{\text{opt}}, \text{ opt}_{\text{opt}}, \text{$
- $(\text{VIII}) \mathbf{T}_{\mathbf{r}} \mathbf{t}_{$
- (X) T₁ $(\mathcal{A}, \mathcal{A}, \mathcal{A},$
- (XI) T A_{m_1} A_{m_2} A_{m_2} A_{m_2} A_{m_2}
- (XII) T. t = 1 t =

- (XIII) T. (1, 1)
- $(XV) T_{1} \dots T_{n} \dots \dots$

 $(XIX) \mathbf{T} \dots \mathbf{A} \dots \mathbf$

 $\mathbf{I} = \mathbf{I} + \mathbf{I} +$

 $\begin{array}{c} \textbf{Article 122} \quad \textbf{T} \quad \textbf{C} \quad \underline{\textbf{m}} \quad \dots \quad \underline{\textbf{m}} \quad \underline{\textbf{m}}} \quad \underline{\textbf{m}} \quad \underline{\textbf{m}} \quad \underline{\textbf{m}} \quad \underline{\textbf{m}} \quad \underline{\textbf{m}} \end{matrix} \end{matrix} \underline{\textbf{m}} \end{matrix} \end{matrix} \underline{\textbf{m}} \end{matrix} \end{matrix} \underline{\textbf{m}} \end{matrix} \end{matrix} \underline{\textbf{m}} \end{matrix} \underline{\textbf{m$

- (I) $A_{\mu m} = a a_{\mu m} (a a_{\mu$
- (II) T_{i_1, i_2, \dots, i_n} , T_{i_1, \dots, i_n} , T_{i_1, \dots, i_n} , T_{i_n, \dots, i_n} , T
- $(\text{III}) \quad \mathbf{T}_{\mathbf{x}} \quad \mathbf{T$
- $(IV) T_{1}, \mathcal{A}, \dots, \mathcal{A} \to \mathcal{A} \to$

- (VI) T_i $_{i}$ $_{i}$

Article 124 I. $(f_{1}, \dots, f_{n}) \rightarrow (f_{n}, \dots$

- (III) T. (\dots, m) (\dots, m) (\dots, m) (\dots, m) (\dots, m) (\dots, m) (\dots, m)
- (V) $\mathbf{M} = \mathbf{m}^{\mathbf{m}} + \mathbf{m$
- (VI) $O_{m} = 0$, $e_{m} = 0$,

 $\mathbf{T} = \sum_{\mathbf{n} \in \mathcal{N}} \left\{ \mathbf{n} \in \sum_{\mathbf{n} \in \mathcal{N}} \left\{ \mathbf{n} \in \sum_{\mathbf{n} \in \mathcal{N}} \left\{ \mathbf{n} \in \sum_{\mathbf{n} \in$

- (1) **C**, ;
- (2) \mathbf{R} , \mathbf{r}
- (3) 0. ;
- (4) I m m m

 $\mathbf{I} = \mathbf{m} + \mathbf{n} +$

Article 126 T

- $(I) \quad T. \quad , \quad x_1 \quad \dots \quad x_{n-1} \quad \dots \quad x_{$
- (II) T. (11) m (11) m (11) m (11) m (11)
- (III) T_{1} , I_{1} , I_{2} , I_{2
- (IV) To a set the set of the set

 $\mathbf{T} = \sum_{\mathbf{n} \in \mathcal{I}} (\mathbf{n} \cdot \mathbf{n}) + \sum_{\mathbf{n} \in \mathcal{I}} (\mathbf{n}$

A man man man and a second of man and a second man and a se

- (I) P_{e} , \dots f_{m} , \dots 10%, \dots 10%, \dots 10%, \dots
- (II) $J_{1}, \gamma, \epsilon, \ldots, \epsilon$
- (III) $\mathbf{D}_{\mathbf{m}}$ the second secon
- (V) Pre, and a set of a strate of a set in the set of t
- (VI) Pre, and a second second

 $\mathbf{A}_{\mathbf{m}} = \mathbf{A}_{\mathbf{m}} =$

Article 128 T \dots \mathcal{A} $\mathcal{A$

 $W \rightarrow \cdots \rightarrow m \rightarrow \cdots \rightarrow \dots \rightarrow \dots$

 $E = t_{x} e_{x} e_{x}$

 $\mathbf{W} = \{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}, \mathbf{w}_{$

- (I) $\mathbf{F}_{\mathbf{x}} = \mathbf{F}_{\mathbf{x}} = \mathbf{F}_{\mathbf{x}$
- $(\mathrm{II}) \quad \mathrm{F}_{\mathbf{x}} \sim \mathbf{C}_{\mathbf{m}} \sim \mathbf{C}_{\mathbf{n}} \sim \mathbf{C}$
- $(\text{III}) \quad \mathbf{F}_{\mathbf{x}} = \mathbf{F$
- - (1) $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{2}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{4}, \mathbf{A}_{4}, \mathbf{A}_{1}, \mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{4}, \mathbf{A}_{4},$
 - (2) \mathbf{A}_{i} , \mathbf{A}_{i} ,

 $(V) \qquad (V) \qquad (V)$

 $\mathbf{I}_{\mathbf{m}} = \mathbf{I}_{\mathbf{m}} =$

- $(\mathrm{II}) \quad \underbrace{\mathbf{m}}_{\mathbf{n}} \quad \underbrace{\mathbf{n}}_{\mathbf{n}} \quad \underbrace{\mathbf{n}} \quad \underbrace{\mathbf{n}}_{\mathbf{n}} \quad \underbrace{\mathbf{n}}_{\mathbf{n}} \quad \underbrace$
- $(IV) = \frac{1}{mm} + \frac{$

 $\mathbf{T} = t_{\mathbf{x}} \mathbf{e} \cdot \mathbf{e} \mathbf{e} \cdot \mathbf{e} \cdot$

Chapter 11 Secretary to the Board of Directors

Article 133 T. C. \mathbf{m} and \mathbf{C} \mathbf{m} and \mathbf{C}

- (II) T. ... [I], [I

(III) $\mathbf{T}_{\mathbf{n}} = \mathbf{T}_{\mathbf{n}} = \mathbf{T}_{\mathbf{$

Article 135 A t_1 and t_2 and t_3 and t_4 and t

 $\mathbf{I}_{\mathbf{x}} = \mathbf{I}_{\mathbf{x}} =$

Chapter 12 President of the Company

Article 137 T \ldots C_{m} \ldots C_{m} \ldots \ldots \ldots d

- $(I) \quad T_{m} = 1 \quad \dots \quad T_{m}$
- (II) T. \mathcal{M} , $\mathcal{$
- (III) T_{m} , r_{m} , r_{m
- $(IV) T_{1} \cdots T_{n} \cdots$
- (V) $\mathbf{T}_{\mathbf{m}} = \mathbf{T}_{\mathbf{m}} + \mathbf{T}_{\mathbf{m}$
- (VI) $T_{n} \sim T_{n'} \sim C_{n'} \sim C_{n'}$
- (VII) T. , \mathcal{A} , \mathcal

Chapter 13 Board of Supervisors

Article 140 T C_{m}

The man provide and the main marked and the second second

 $\begin{array}{c} \mathbf{R}_{\mathbf{1}} & \mathbf{n}_{\mathbf{1}} & \mathbf{n}_{\mathbf{1$

- $(I) \quad T_{n} \quad (I) \quad (I$
- (II) $T_{1} \neq 1$, $C_{1} \neq 1$, $C_{2} \neq 1$, $C_{3} \neq 1$,
- (III) T. . , \mathcal{A}_{m} , $\mathcal{A$
- (IV) The transformed for C_{m} $C_{$
- (VI) T_{1} , z_{1} , \ldots , m^{-1} , \cdots , 1, m^{-1} , 1;
- $(\text{VIII}) \quad \mathbf{T}_{\mathbf{x}} \quad \mathbf{x} \quad \mathbf{$

 $\mathbf{T} = \mathbf{T} + \mathbf{T} +$

Article 145 T \dots m_{1} \dots m_{n} \dots m_{n} \dots m_{n} \dots m_{n} \dots m_{n} \dots m_{n} \dots \dots m_{n} \dots \dots \dots

Article 146 T \dots n_{1} \dots n_{n} \dots

 $\mathbf{T} = \{\mathbf{x}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}, \mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}, \mathbf{y}_{$

Article 147 T \dots M \dots M

 $\begin{array}{c} S_{1}, \mathcal{A}_{1}, \mathcal{A}_{2}, \dots, \mathcal{A}_{n} \\ \xrightarrow{} m_{n} \left[\begin{array}{c} m_{1} \\ m_{2} \\ m_{n} \end{array} \right] \xrightarrow{} m_{n} \left[\begin{array}{c} m_{1} \\ m_{2} \\ m_{n} \end{array} \right] \xrightarrow{} m_{n} \left[\begin{array}{c} m_{1} \\ m_{2} \\ m_{n} \end{array} \right] \xrightarrow{} m_{n} \left[\begin{array}{c} m_{1} \\ m_{2} \\ m_{n} \end{array} \right] \xrightarrow{} m_{n} \left[\begin{array}{c} m_{1} \\ m_{2} \\ m_{2} \\ m_{n} \end{array} \right] \xrightarrow{} m_{n} \left[\begin{array}{c} m_{1} \\ m_{2} \\ m_{2} \\ m_{n} \end{array} \right] \xrightarrow{} m_{n} \left[\begin{array}{c} m_{1} \\ m_{2} \\ m_{2} \\ m_{n} \end{array} \right] \xrightarrow{} m_{n} \left[\begin{array}{c} m_{1} \\ m_{2} \\ m_{2} \\ m_{n} \end{array} \right] \xrightarrow{} m_{n} \left[\begin{array}{c} m_{1} \\ m_{2} \\ m_{2} \\ m_{n} \\ m_{n} \end{array} \right] \xrightarrow{} m_{n} \left[\begin{array}{c} m_{1} \\ m_{2} \\ m_{n} \\$

Article 149 Si, a_{1} , a_{2} , a_{1} , a_{2} , a_{3} , a_{4} , a_{2} , a_{3} , a_{4} , a_{5} , $a_{$

Chapter 14 Qualifications and Duties of Directors, Supervisors, President and Other Senior Management of the Company

Article 150 A, \mathcal{A} , \mathcal{A}

- (VIII) , where is a second of the second of $\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} = \mathbf{x} \cdot \mathbf{x} \cdot$
- 1, Am - At ...

.....

- $Q_{1} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$ (I)
- (III) $\mathbf{F}_{\mathbf{n}}$ \mathbf{m} \mathbf{m} \mathbf{m} \mathbf{m} \mathbf{m} \mathbf{m} \mathbf{m} \mathbf{m} \mathbf{m} \mathbf{m} فتنبيه الورد فالمعاون برما العمالية معان والمعالي والمعالي ومالعا العمالة

T , t ,

- A, \mathcal{A} , \mathcal (I) the second of the manual part of the second parts of the second pa $\mathbf{m} = \mathbf{m} \cdot \mathbf{m} \cdot$ ٢. 'محمد جمعه .' .. ا. وأممير ... ٢. ومحمد جمع معير ا. و. و - - - ... · · · · · · · · · · · · · ·);
- (II) A , see γ , γ $\sim C_{m} \sim 10$, ~ 10 , ~ 10 , ~ 10 $C_{\rm eq} = \frac{1}{C_{\rm eq}} + \frac{1}{C_{\rm$
- (III) A, $\mathcal{A}_{\mathcal{A}}$, \mathcal{A} , ند امم

Article 153 I. $(1, \alpha_{1}, 1, \ldots, n_{n})$ and $(1, \alpha_{n})$ and $(1, \alpha_{n})$

- (I) $N_{c} = \frac{C_{c}}{m}$ $C_{c} = \frac{C_{c}}{m}$
- (II) $T_{1}, \ldots, T_{n}, \ldots,$
- (III) N_{1} , M_{1} , C_{1} , C_{2} , M_{1} , M_{2} , M_{1} , M_{2} , M_{1} , M_{2} , M_{2
- $(IV) N_{m} = \sum_{m} \sum_{$

Article 155 I. $|_{|_{A||_{A}}} |_{|_{A||_{A}}} |_{|_{A|||_{A}}} |_{|_{A|||$

- (II) T_{i} , i_{i} , i_{i}

- $(\text{III}) \quad \mathbf{T}_{\mathbf{x}_{1}} = \left\{ \begin{array}{c} \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \mathbf{m}_$

- (VII) N $(1 1)^{n}$, $(1 1)^{n}$
- (VIII) $\mathbf{N}_{\mathbf{n}}$, $\mathbf{n}_{\mathbf{n}}$
- $(IX) T_{1} \dots A_{A_{n+1}} \dots A$
- (X) N_{\dots} M_{n} C_{n} M_{n} M_{n} M_{n} M_{n} M_{n}
- (XII) No $(x_1, \dots, x_{n-1}, \dots$
 - 1. $\mathbf{R}_{\mathbf{r}}$, \mathbf

 - 3. \mathbf{T}_{1} , \mathbf{x}_{2} , \mathbf{x}_{3} , \mathbf{x}_{4} , \mathbf{x}_{5} , \mathbf

 $G_{\mathbf{n}} = f_{\mathbf{n}} + f_{\mathbf{n}}$

 $\begin{array}{c} \text{Article 156} \quad D_{\text{s}} \leftarrow \cdots \leftarrow \sigma_{\text{s}} + \cdots \leftarrow \sigma_{\text{s}} \leftarrow \sigma_{\text{s}} + \cdots \leftarrow \sigma$

- $(I) = S_{p_1} \cdot \cdots \cdot s_{m_1} \cdot \cdots \cdot s_{m_{n-1}} \cdot \cdots \cdot s_{m_{n-1}}$

Article 158 T $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{5}$ $_{6}$ $_{6}$ $_{7}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{6}$ $_{6}$ $_{6}$ $_{6}$ $_{7}$

Article 160 I, ..., C_{m} , C_{m} , I_{m} ,

Article 162 T. C. $_{\mathbf{m}}$ \ldots $_{\mathbf{m}}$

- $(I) \quad T \quad C_{i_{1}} \quad \dots \quad A_{i_{k}} \quad \dots \quad A_{i_{k}} \quad \dots \quad A_{i_{k}} \quad \dots \quad A_{i_{k}} \quad A_{i_{k}} \quad \dots \quad A_{i_{k}} \quad A_{i_{k}}$
- (II) $\mathbf{T} \in \mathbf{C}_{\mathbf{m}} \times \mathbf{v}_{\mathbf{k}} \times \mathbf{$

Article 163 I. C. m is a strip in the product of C m is C m in the product of C m is C M in the product of C m is C M in the product of C m is C M in the product of C M in the product of C M in the product of C M is C M in the product of C M in the product of C M in the product of C M is C M in the product of C M in the product of C M in the product of C M is C M in the product of C M in the product

- $(I) \quad T \quad (I) \quad T \quad (I) \quad (I$
- (II) $\mathbf{T} = \prod_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

Article 165 T. II. A second se

Article 166 I \ldots $(1, \dots, n)$, $(1, \dots, n)$,

- (II) $\underset{n}{R} \underset{m}{m'} \underset{m}{\dots} \underset{m'}{\dots} \underset{m'}{\dots$
- (III) $R \xrightarrow{\mathbf{m}} \cdots \xrightarrow{\mathbf{r}} \xrightarrow{$

 $S = \sum_{n \in \mathbb{N}} \sum_{n \in \mathbb{N}}$

- $(II) \quad D_{\mathbf{x}} = \dots = \mathbf{x} + \mathbf{x} +$

 $\begin{array}{c} \textbf{Article 168} \quad \textbf{T} \quad \textbf{C} \quad \textbf{m} \quad$

- (I) A ... , m to a ... , m ...
- (II) A m' m' C m' T (m') M' M' M'

 $A_{i} \xrightarrow{\mathbf{m}} (\mathbf{x} - \mathbf{x} -$

Chapter 15 Financial Accounting System and Profit Distribution

Article 170 T \ldots C_{m} C_{m} G_{e1} \ldots p_{e1} \ldots d_{n-1} \ldots d_{n-1}

 $T : C_{m} : R_{m} :$

 $\mathbf{T} = \mathbf{C}_{\mathbf{A}} + \mathbf{C}_{\mathbf$

Article 171 T \dots d d_{1} d_{2} \dots C_{m} \dots m^{2} \dots

Article 172 T C_{m} C_{m}

 $\mathbf{T} = \mathbf{C}_{\mathbf{m}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n} \\ \mathbf{n} & \mathbf{n} \end{bmatrix} \right]_{\mathbf{n}} = \left[\begin{bmatrix} \mathbf{n} & \mathbf{n$

Article 174 T $_{m}$ $_{m}$

Article 176 T C $_{\rm m}$

Article 177 W C_{mr} C_{mr} f_{mr} f_{mr

 $A \sim \mathcal{A} \sim \mathcal{C}_{m} \sim \mathcal{A} \sim \mathcal{A}_{m} \sim \mathcal{$

 $\mathbf{I} = \left[\mathbf{I} + \mathbf{I}$

Article 178 C , , , , , , , , , , , , , , , , ; ;

- (I) $P_{\mathcal{A}} \xrightarrow{m} m \xrightarrow{m} m \xrightarrow{m} m \xrightarrow{m} m$

Article 179

- $(IV) T = C_{mr} = (1 + 1) + (1 + 1$
- (V) $\mathbf{T} \cdot \mathbf{C}_{\mathbf{m}}$ $(\mathbf{v} \cdot \mathbf{r}_{1}) = \frac{1}{16} + \frac{1}{16}$
 - (1) $W = C_{m} + C_{m$
 - (2) W $\sim C_{m}$, C_{m} , $C_$
 - (3) W $\sim C_{m}$ $\sim C_{m}$

 $\mathbf{I}_{\mathbf{n}} = \mathbf{I}_{\mathbf{n}} + \mathbf{I}_{\mathbf{n}} +$

To proprior to the state of the

- $(\text{VII}) \mathbf{I} = \mathbf{C}_{\mathbf{M}} \xrightarrow{\mathbf{M}} \overrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \overrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \overrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \overrightarrow{\mathbf{M}} \overrightarrow{\mathbf{M}} \xrightarrow{\mathbf{M}} \overrightarrow{\mathbf{M}} \overrightarrow{\mathbf{M}}$
- (VIII) $\mathbf{T} = \mathbf{C}$, \mathbf{m} , $\mathbf{n} = 1$,

Article 182 T \dots (x, y) (

Article 183 T t_{1} t_{2} t_{1} t_{2} t_{2} t_{2} t_{3} t_{4} t_{1} t_{1} t_{2} t_{3} t_{1} t_{1} t_{2} t_{3} t_{1} t_{1} t_{1} t_{2} t_{3} t_{1} t_{1} t_{1} t_{2} t_{3} t_{1} t_{1} t_{1} t_{1} t_{2} t_{1} t_{1} t_{2} t_{1} t_{1} t_{2} t_{3} t_{1} t_{1} t_{1} t_{1} t_{2} t_{2} t_{1} t_{2} t_{2} t_{1} t_{2} t_{2} t_{1} t_{2} t_{2

 $T = \prod_{m \in \mathcal{M}} \left\{ 1 + \frac{1}{m} \right\}_{m \in \mathcal{M$

 $T = \prod_{i=1}^{n} \sum_{i=1}^{n} \prod_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$

 $\mathbf{T} = \mathbf{C}_{\mathbf{m}} = \left[\begin{bmatrix} \mathbf{r}_{1} & \mathbf{r}_{2} & & \mathbf{r}_$

 $\mathbf{T} = \mathbf{C}_{\mathbf{m}} + \cdots + \mathbf{n}_{\mathbf{n}} + \cdots + \mathbf{n$

- (II) U_{μ} , u_{μ}

Chapter 16 Appointment of Accounting Firm

Article 185 T. C. \mathbf{m} is a product of \mathbf{S} is a structure of \mathbf{M} is a product of \mathbf{S} is a structure of \mathbf{M} is a product of \mathbf{M} is a structure of \mathbf{M} i

 $\mathbf{T} = \mathbf{C}_{\mathbf{m}} = \frac{1}{2} \sum_{\mathbf{m}} \frac{1}{2} \sum_{\mathbf{m}}$

 $\mathbf{I}_{\mathbf{x}} = \mathbf{I}_{\mathbf{x}} + \mathbf{I}_{\mathbf{x}} +$

 $(\text{III}) \quad \mathbf{T}_{1} \dots \mathbf{e}_{n} \dots \mathbf{e}_{n}$

Article 189 $\mathbf{R}_{1} \neq \cdots \neq \mathbf{m}_{m} \neq \cdots \neq \mathbf{m}_{m} \neq \cdots \neq \mathbf{m}_{n} \neq \cdots \neq \mathbf{m}_{n} \neq \cdots \neq \mathbf{m}_{n} \neq$

Article 190 $\mathbf{T} = \mathbf{m}^{(1)} + \mathbf{m}^{(1)} + \mathbf{m}^{(1)} + \mathbf{m}^{(2)} + \mathbf{m}^{(2)}$

Article 191 A, $m \sim 1$ $m \sim 1$

 $\mathbf{T} = \mathbf{T} + \mathbf{T} +$

- $(\mathbf{I}) \quad \mathbf{T} \quad , \mathbf{z} \quad , \mathbf{v} \quad , \mathbf{v} \quad \mathbf{m} \quad$
- - 1. Define the second s
 - 2. Set (m, m) = (m,
- (III) I C_{m} C_{m

- - 1. The m is a second metric m is m is
 - 2. The matrix m_{1} m_{2} m_{1} m_{2} m_{1} m_{2} m_{1} m_{2} m_{2}
 - 3. T. I. $(n_1, n_2, \dots, n_{n_1})$

 $\mathbf{T} = \left\{ \begin{array}{cccc} \mathbf{T} & \mathbf{T$

 $A_{1} \dots A_{n} \dots A_{n$

 $(\mathcal{A}_{\mathcal{A}}) = (\mathcal{A}_{\mathcal{A}}) = (\mathcal{A}) = (\mathcal{A}) = (\mathcal{A}) = (\mathcal{A}) = (\mathcal{A}) = (\mathcal{A}) = (\mathcal{A})$

Chapter 17 Merger and Division of the Company

Article 193 I. a_{1}, \ldots, a_{n} a_{n}, \ldots, a_{n} a_{n} a_{n}, \ldots, a_{n} a_{n} $a_{$

 $\mathbf{T} = \{\mathbf{m}^{(1)}, \mathbf{m}^{(2)}, \mathbf{m}^{(2$

Article 194 $M_{\text{max}} \sim C_{\text{m}} \sim m^{2} m^{2$

I make C_{m} r_{m} r_{m}

 $\mathbf{T} = \{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{$

Article 195 W $\sim C_{m}$ $\sim C_{m}$

 $\mathbf{L}_{\mathbf{M}} = \mathbf{L}_{\mathbf{M}} =$

 $\mathbf{T} = \mathbf{m} + \mathbf{m} +$

Chapter 18 Dissolution and Liquidation of the Company

Article 197 T. C. m (1, 1)

- (II) \mathbf{T} , \mathbf{T}
- $(IV) T : C_{mr} := (1, 1, \dots, n)$
- (VI) I $C_{m'}$ $M_{m'}$ $M_{$

Article 198 I C_{m} M_{m} M_{m}

 $I = \frac{1}{2} \cdot \frac{A_{m_1}}{2} \cdot \frac{A_{m_2}}{2} \cdot \frac{A_{m_2}}{2}$

 $I = C_{mr} + (1 + 1) + ($

 $\mathbf{A} = \mathbf{A} + \mathbf{A} +$

 $\mathbf{T} = \begin{bmatrix} \mathbf{T} & \mathbf{T}$

Article 201 T $_{\mu}$ $_{\mu}$

 $\mathbf{T}_{\mathbf{x}} = \mathbf{T}_{\mathbf{x}} =$

 $D_{1} \xrightarrow{}_{x} 1 \xrightarrow{}_{x} \xrightarrow{}_$

Article 202 $D_{1} = 1_{1} + 1_{2} + 1_{3} + 1_{4} +$

- (I) T_{i} T_{i}
- (II) T_{m_1,\dots,m_m} , T_{m_1,\dots,m_m} ,
- (IV) T_{i} , f_{i} , f_{i}
- (V) To any contraction of the set to and;
- (VII) $T_{i} \neq \dots \in C_{i} \cap C_{i}$

 $\mathbf{L}_{\mathbf{x}} \mathbf{I}_{\mathbf{x}} \mathbf{f}_{\mathbf{x}} \cdots \mathbf{f}_{\mathbf{x}} \mathbf{$

 $D_{1} = 1$, 1 = 1

Article 205 A m_{1} m_{1} m_{2} m_{1} m_{2} m_{2}

 $\mathbf{T}_{\mathbf{n}} = \frac{1}{2} \left[\frac{1}{2$

 $M_{\mathbf{m}} \sim (\mathbf{r}_{1})^{\mathbf{r}_{1}} \sim (\mathbf{r}_{1})^{\mathbf{r}_$

Chapter 19 Procedures for Amendment of the Articles of Association

Article 208 T. C. m m m A_{α_1} A_{α_2} A_{α_3} A_{α_4} A_{α

Article 209 T C m A_{m} A_{m} A_{m} A_{m} A_{m}

- (I) $\mathbf{T}_{\mathbf{m}} = \mathbf{T}_{\mathbf{m}} = \mathbf{T}_{\mathbf{m}$
- (II) \mathbf{T} $\mathbf{A}_{\mathbf{x}_{1}}$ $\mathbf{A}_{\mathbf{x}_{2}}$ $\mathbf{A}_{\mathbf{x}_{2}}$
- (III) \mathbf{T} ..., \mathbf{A} ...,

Article 210 T $m^{-1}m^{-1}$ A_{m} A_{m} A_{m} M^{-1} M^{-1} M^{-1}

- $(I) \quad T \quad \dots \quad A \quad \dots$
- (II) $\mathbf{T}_{\mathbf{n}} \cdots \mathbf{n}_{\mathbf{n}} \cdots \mathbf{n}_{\mathbf{n$

 $\mathbf{T} = \mathbf{A} + \mathbf{A} +$

Article 212 W $m^{-1}m^{-1}m^{-1}$ A_{m} A_{m} A_{m} $m^{-1}m^{-1}$ $m^{-1}m^{-1}m^{-1}$ $m^{-1}m^{-1}m^{-1}$ $m^{-1}m^{-1}m^{-1}m^{-1}$ $m^{-1}m^$

Chapter 20 Notices

Article 213 T \cdots C_{m} \cdots m_{n} \cdots

- (I) B., ..., (1), ..., ;
- (II) **B**, ...;
- (III) $\mathbf{B}_{\mathbf{A}} = (\mathbf{A}_{\mathbf{A}} \mathbf{A}_{\mathbf{A}});$

- (VI) \mathbf{B} \mathbf{C} $\mathbf{$

 $N_{m} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$

Article 214 I. C_{m} C_{m}

Article 215 F. (m, m') (m, m')

 $\mathbf{A}_{\mathbf{m}} = \mathbf{C}_{\mathbf{m}} = \mathbf{C}_{\mathbf{m}} = \mathbf{m}_{\mathbf{m}} =$

Article 216 N. N_{1} N_{2} N_{2}

Article 217 T. C. m' is m'. m' is m' is m' is m'. m' is m' is m'. m'

 $T = B, a_{m} = \dots = (a_{m}, a_{m}, a$

Chapter 21 Settlement of Disputes

(I) I. $(1, \dots, 1, \dots, 1, n)$ (1, n) (1, n) (1, n) (1, n) (1, n) $(1, \dots, 1, n)$ $(1, \dots, n)$

 $\mathbf{T} = \{\mathbf{x}, \mathbf{y}, \mathbf{$

 $\mathbf{D}_{\mathbf{x}}$, $\mathbf{I}_{\mathbf{x}}$, \mathbf{I}